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Two distinct partially ordered phases have been revealed by the Landau-Ginzburg-Wilson and
Monte Carlo studies of the stacked frustrated triangular Ising model. These two types of order,
occurring consecutively as temperature is lowered, and an observed shifting between equivalent
ordered phases at a given temperature can be explained by a physical interpretation of the
expected global renormalization-group flows in temperature and sixfold symmetry-breaking field
acting on the two-component order parameter. New Monte Carlo data are presented, which
confirm long-range order and a previous prediction of the above interpretation. The transition
from the paramagnetic phase is in the XY universality class, whereas the transition between the
ordered phases appears to be a sixfold symmetry-breaking flop.

PACS numbers: 05.70.Fh, 75.50.K, 64.60.Cn, 65.50. + m

The Ising spin system constructed by stacking antifer-
romagnetic triangular lattices has an infinite ground-state
degeneracy due to the fully frustrated xy planes, but is a
candidate for finite-temperature ordering due to the stabiliz-
ing z direction. Indeed, Landau-Ginzburg—-Wilson (LGW)
and Monte Carlo analyses have revealed two ordered
phases." In the low-temperature phase, one sublattice is fully
ordered and, oppositely, two sublattices are partially or-
dered. In the intermediate-temperature phase, two sublat-
tices are fully and oppositely ordered, and one is disordered.
The various ordering phenomena exhibited by this system
can be coherently explained and predicted by postulated glo-
bal renormalization-group flows. One is led, in this process,
to an interesting comparison between the global flows, in
two and three dimensions, of the six-state clock model, to
which the present system is related by LGW theory.

The Hamiltonian of the model is

Xy

Hx J(lzj)s,s J<.Z,>s'j’ (1)

whereJ,J’>0,s; = + 1, and {jj) indicates summation over

nearest-neighbor pairs in the xy plane or along the z direc-

tion. The possible onset of order can be deduced from LGW
theory.? The Hamiltonian is Fourier transformed,

= 3{V [cos(q,) + 2 cos(g./2)cos (\3q,/2) ]

—J'cos(g.) }s(a)s( — ), 2)
where the sum is over a hexagonal Brillouin zone. Although
the summand appears diagonalized, the many-body problem
is not truly solved, since the hard-spin condition s; = + 1
translates into the constraint ¥ ~'Z, s (k)siq — k) =5 (q). A
basic hypothesis is that this constraint is not conserved un-
der rescaling and therefore is irrelevant to asymptotic criti-
cality. Thus, the mode(s) with the lowest energy J (q) is pre-
dicted to become critical as temperature is lowered from the
disordered phase, unless preempted by a strongly first-order
transition. Here, these are the two degenerate modes Q |

2416 J. Appl. Phys. 55 (6), 15 March 1984

0021-8979/84/062416-03%02.40

= ( 4+ 47/3,0,0}, covering the six corners of the Brillouin
zone via reciprocal lattice vectors. A two-component (n = 2)
order parameter is thus deduced.' The LGW Hamiltonian is
constructed in terms of the near-critical modes,
s(Q . + q) = miq)expl + i0(q)], |a| <1, by noting all possible
invariants under the symmetries of the system, at each con-
secutive order:

4%':—;-2(r+q2)m2+u4zm4
q 4

+ ug z m® + vGZm‘> cos(64 ), {3)
6 6

where 2 signifies summation over p momentum arguments
which add to zero. This is the Hamiltonian of an XY (n = 2)
model with sixfold symmetry breaking, also known as the
continuum six-state clock model.”

The microscopic configuration of the ordered phases is
obtained' by Fourier transforming the modes which mini-
mize Eq. (3). For v¢ <0, the minimal angles are 6 = 0, 7/3,
2m/3,...., assigning the magnetizations (M, — M /2, — M /2)
to the three sublattices of the triangular xy planes [Fig. 1(a)],
with translational symmetry along the z direction. For
ve > 0, these angles are shifted by 7/6, assigning the sublat-
tice magnetizations (M, — M,0) shown in Fig. 1(b). Each of
these two ordered phases is sixfold degenerate, as seen by the
six minimal angles or, correspondingly, by up-down symme-

|

/ A\ g \'\ A
X / VAYAN

A

FIG. 1. The (M, — M /2, — M /2) and (M, — M,0) phases, respectively oc-
curing at low and intermediate temperatures.
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FIG. 2. Postulated global renormalization-group flows. The quantitative
rendition of the original Hamiltonian (1) by the LGW Hamiltonian (3) can-
not be unambiguously evaluated. In hindsight of the Monte Carlo results,
the schematic dashed line in Fig. 2(a) must be the locus of initial conditions,
explaining the transition between the two ordered phases as a spin flop.

try M— — M and the three ways of singling out one sublat-
tice.

Both types of ordering raised by LGW theory have been
seen by Monte Carlo simulation. The (M, — M /2, — M /2)
and (M, — M,0) phases occur respectively at low and inter-
mediate temperatures. The first results' were obtained on
15X 15X L lattices, where L = 4,8,12 is the number of lay-
ers, with periodic boundary conditions. These results have
been further developed with recent runs on larger lattices, to
be described below. But first, a peculiar shift phenomenon
will be discussed.

In the intermediate-temperature phase, which we first
studied rather extensively with the lattice sizes quoted
above, the system moved readily between the six degenerate
ordered phases, for example shifting from the (M, — M,0)
phase to the (M,0, — M) phase. For these lattice sizes, such
shifts occurred at the time scale of a few hundred Monte
Carlo steps per spin (MCS). To understand this pheno-
menon, we consider the global renormalization-group flow
diagram [Fig. (2a)]. To first order in € = 4 — d, v, is irrele-
vant at the transition from the disordered phase.' Accord-
ingly, the phase boundary coincides with the flow arriving to
theisotropic XY (vs = 0)fixed point C *, which therefore dic-
tates the critical properties. By contrast, the strong-coupling
(zero-temperature) fixed point F * is a first-order fixed point
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FIG. 3.Staggered magnetization M, forJ ' = J /2(O)andJ’ = J (@). Results
forJ’' = Jarefroma 30X 30X 15system, whilethoseforJ ' = J /2arefroma
24X 24X 15 system. At the lowest T, results varied too widely from run to
run to be quantitatively reliable, reflecting kinetic effects.

controlling the flop line between the two types of sixfold
ordered phases of v,=0. It is necessary for F * to be unstable
in the v, direction, with eigenvalue exponent equal to spatial
dimensionality.* The v, component of the flows must reverse
direction somewhere between F * and C *.

The situation can be instructively compared with the
similar two-dimensional (d = 2) case.® The v, flows again
reverse direction, but here the 7' < T, axis is a continuum of
fixed points [Fig. 2(b)]. Thus, the intermediate-temperature
flows actually reach a segment of this fixed line, so that the
region of these flows is distinct as an algebraically ordered
phase.’” Each such flow constitutes a line of “equicritica-
lity,” e.g., constant critical exponent 7. By contrast, in
d = 3, where the fixed line is replaced by the C * to F * flow,
the intermediate-temperature flows, while approaching
vg = 0, relentlessly drift to low temperatures. They can never
reach v, = 0, since each consecutive step in that direction
becomes smaller, and eventually enter the low-temperature
region where v, is amplified. They veer off from F * and run
away to infinite v¢. This global picture is postulated from the
continuity of the flows, i.e., the analyticity of the recursion
relations.

The statistical mechanics of a thermodynamic system
involves following to the bitter end the renormalization-
group trajectory determined by the initial parameters of the
system. Thus, in d = 2, an intermediate-temperature system
is asymptotically equivalent to the isotropic XY model, e.g.,
in the algebraic decay of the long-distance correlations. Sim-
ilarly, in d = 3, an initial condition in either ordered phase
renormalizes to an infinite |vg|, meaning that the thermody-
namic system is pinned into one of the six clock directions.
The situation is different for finite systems, however. Only a
finite number of rescalings can be carried out, until a single
degree of freedom is left determining the overall properties

“of the system. That is, a finite flow segment, depending on

the system size, is taken from the initial condition. Then, a
one-body calculation is done at the terminal condition, Ap-
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plying this procedure® to Fig. 2(a), consider the initial condi-
tion represented by a black circle. For the finite system sub-
jected to Monte Carlo simulation, the terminal condition
could be the open circle, with very small |v]. Then, the sys-
tem would undergo overall shifts between the six clock direc-
tions, explaining our observations. Conversely, a larger sys-
tem would reach, from the same initial condition, a terminal
point further along the trajectory, shown with a cross in Fig.
2(a). The large terminal value of |vs| would virtually elimi-
nate any shifts.

This earlier prediction’ has now been confirmed. We
have now extended the Monte Carlo simulations to
L'XL'XL lattices with L ' = 15,24,30 and L = 4,8,12,15.
The shifts, which were at the time scale of a few hundred
MCS for the 15X 15X 12 lattice, occur at a time scale of
thousands of MCS for the 30X 30 X 15 lattice, in agreement
with the picture above. This indicates the system has true
long-range order in the thermodynamic limit. Figure 3
shows the staggered magnetization M, = ((s{"') — (s%})/2,
where the sublattices were relabelled by decreasing magneti-
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zation. Between 1000 and 2000 MCS were taken at each
temperature, with data thrown out during shifts between the
six degenerate phases. A sharp onset of M, vs T is obtained,
as expected for a second-order phase transition.
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